CD44 expression identifies astrocyte-restricted precursor cells.

نویسندگان

  • Ying Liu
  • Steve S W Han
  • Yuanyuan Wu
  • Therese M F Tuohy
  • Haipeng Xue
  • Jingli Cai
  • Stephen A Back
  • Larry S Sherman
  • Itzhak Fischer
  • Mahendra S Rao
چکیده

The precise lineage between neural stem cells and mature astrocytes remains poorly defined. To examine astrocyte development, we have characterized glial precursors from neural tissue derived from early embryonic ages. We show that CD44 identifies an astrocyte-restricted precursor cell (ARP) that is committed to generating astrocytes in vitro and in vivo in both rodent and human tissue. CD44+ cells arise later in development than neuronal-restricted precursors (NRPs) or tripotential glial-restricted precursors (GRPs). ARPs are distinguished from GRP and NRP cells by their antigenic profile and differentiation ability. ARPs can be generated from GRP cells in mass or clonal cultures and in vivo after transplantation, suggesting a sequential differentiation of neuroepithelial stem cells (NEPs) to GRPs to ARPs and then to astrocytes. The properties of ARPs are different from other astrocyte precursors described previously in their expression of CD44 and S-100beta and absence of other lineage markers. Using a CD44 misexpression transgenic mouse model (CNP-CD44 mouse), we show that CD44 overexpression in vivo and in vitro decreases the number of mature glia and increases the number of O4+/GFAP+ cells tenfold. Misexpression of CD44 in culture inhibits oligodendrocytes and arrests cells at the precursor state. In summary, our data provide strong evidence for the existence of a CD44+ ARP in the developing nervous system.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dynamic Changes of CD44 Expression from Progenitors to Subpopulations of Astrocytes and Neurons in Developing Cerebellum

We previously reported that CD44-positive cells were candidates for astrocyte precursor cells in the developing cerebellum, because cells expressing high levels of CD44 selected by fluorescence-activated cell sorting (FACS) gave rise only to astrocytes in vitro. However, whether CD44 is a specific cell marker for cerebellar astrocyte precursor cells in vivo is unknown. In this study, we used im...

متن کامل

Direct reprogramming of human astrocytes into neural stem cells and neurons

Generating neural stem cells and neurons from reprogrammed human astrocytes is a potential strategy for neurological repair. Here we show dedifferentiation of human cortical astrocytes into the neural stem/progenitor phenotype to obtain progenitor and mature cells with a neural fate. Ectopic expression of the reprogramming factors OCT4, SOX2, or NANOG into astrocytes in specific cytokine/cultur...

متن کامل

Alternative CD44 splicing identifies epithelial prostate cancer cells from the mesenchymal counterparts

An epithelial to mesenchymal transition (EMT) has been shown to be a necessary precursor to prostate cancer metastasis. Additionally, the differential expression and splicing of mRNAs has been identified as a key means to distinguish epithelial from mesenchymal cells by qPCR, western blotting and immunohistochemistry. However, few markers exist to differentiate between these cells by flow cytom...

متن کامل

The tripotential glial-restricted precursor (GRP) cell and glial development in the spinal cord: generation of bipotential oligodendrocyte-type-2 astrocyte progenitor cells and dorsal-ventral differences in GRP cell function.

We have found that the tripotential glial-restricted precursor (GRP) cell of the embryonic rat spinal cord can give rise in vitro to bipotential cells that express defining characteristics of oligodendrocyte-type-2 astrocyte progenitor cells (O2A/OPCs). Generation of O2A/OPCs is regulated by environmental signals and is promoted by platelet-derived growth factor (PDGF), thyroid hormone (TH) and...

متن کامل

DIFFERENTIAL EXPRESSION OF SURFACE MARKERS CD45RB AND CD44 ON MURINE CD8+ CELLS

Considering the emerging importance of phenotypic markers as indicators of cell function and differentiation, we studied patterns ofCD44 and CD45RB expression in CD8+ murine T cells with prior exposure to antigen or staphylococcal enterotoxin B ( SEB ). Following in vivo priming with two purified protein derivatives (one from a virulent WHO strain and the other from an avirulent strain), T ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Developmental biology

دوره 276 1  شماره 

صفحات  -

تاریخ انتشار 2004